D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Solution 7	FS 2025

7.1. Locally symmetric spaces. Let M be a connected m-dimensional Riemannian manifold. Then M is called *locally symmetric* if for all $p \in M$ there is a normal neighborhood B(p, r) such that the *local geodesic reflection*

$$\sigma_p := \exp_p \circ (-\mathrm{id}) \circ \exp_p^{-1} : B(p,r) \to B(p,r)$$

is an isometry.

(a) Show that if M is locally symmetric, then $DR \equiv 0$.

Hint: Use that $d(\sigma_p)_p = -id$ on T_pM .

(b) Suppose that $DR \equiv 0$. Show that if $c : [-1, 1] \to M$ is a geodesic and $\{E_i\}_{i=1}^m$ is a parallel orthonormal frame along c, then

$$R(E_i, c')c' = \sum_{k=1}^m r_i^k E_k$$

for constants r_i^k .

(c) Show that if $DR \equiv 0$, then M is locally symmetric.

Hint: Let $q \in B(p,r)$, $q \neq p$, and $v \in T_q M$. To show that $|d(\sigma_p)_q(v)| = |v|$, consider the geodesic $c : [-1,1] \rightarrow B(p,r)$ with c(0) = p, c(1) = q, and a Jacobi field Y along c with Y(0) = 0, Y(1) = v. Use (b).

Solution. (a) Suppose M is locally symmetric. Let $p \in M$ and $w, x, y, z \in T_p M$. Since σ_p is an isometry and $d(\sigma_p)_p = -id$, we have:

$$-(D_w R)(x, y)z = d(\sigma_p)_p((D_w R)(x, y)z)$$

= $D_{d(\sigma_p)_p w}(d(\sigma_p)_p x, d(\sigma_p)_p y)d(\sigma_p)_p z$
= $(D_{-w}R)(-x, -y)(-z)$
= $(D_w R)(x, y)z$

Hence, $(D_w R)(x, y)z = 0.$

(b) Recall that for vector fields $X, Y, Z, W \in \Gamma(TM)$,

$$D_W(R(X,Y)Z) = R(X,Y)D_WZ + R(D_WX,Y)Z + R(X,D_WY)Z + (D_WR)(X,Y)Z$$

Let $R(E_i, c')c' = \sum_{k=1}^m f_i^k E_k$ for functions $f_i^k : [-1, 1] \to \mathbb{R}$. Since E_i and c' are parallel:

$$0 = (D_{\frac{\partial}{\partial_t}}R)(E_i, c')c' = D_{\frac{\partial}{\partial_t}}(R(E_i, c')c')$$
$$= \sum_{k=1}^m D_{\frac{\partial}{\partial_t}}(f_i^k E_k) = \sum_{k=1}^m \dot{f}_i^k E_k + f_i^k D_{\frac{\partial}{\partial_t}} E_k$$
$$= \sum_{k=1}^m \dot{f}_i^k E_k,$$

which implies $\dot{f}_i^k = 0$ and therefore f_i^k is constant.

(c) Let $q \in B(p,r)$, $q \neq p$, and $v \in T_q M$. We must show that $|v| = |d(\sigma_p)_q(v)|$. Let $c : [-1,1] \to M$ be the geodesic with c(0) = p, c(1) = q and let Y be the Jacobi field along c with Y(0) = 0, Y(1) = v. Since σ_p reverts geodesics, $d(\sigma_p)_q(Y(1)) = Y(-1)$, and therefore we must show that |Y(1)| = |Y(-1)|. Write $Y = \sum_{i=1}^m h^i E_i$ for functions $h^i : [-1,1] \to \mathbb{R}$. The Jacobi equation implies:

$$\ddot{h}^k + \sum_{i=1}^m h^i r_i^k = 0$$

with $h^i(0) = 0$ for i = 1, ..., m. It follows that $h^i(-t) = -h^i(t)$ for all $t \in [-1, 1]$, and in particular |Y(-1)| = |Y(1)|.

7.2. Conjugate points in manifolds with curvature bounded from above.

- (a) Prove directly, without using the Rauch Comparison Theorem, that there are no conjugate points in manifolds with non-positive sectional curvature.
- (b) Show that in manifolds with sectional curvature at most κ , where $\kappa > 0$, there are no conjugate points along geodesics of length $< \pi/\sqrt{\kappa}$.
- (c) Show that if $c : [0, \pi/\sqrt{\kappa}] \to M$ is a unit speed geodesic in a manifold with $\sec \geq \kappa > 0$, then some c(t) is conjugate to c(0) along $c|_{[0,t]}$.
- Solution. (a) Let Y be a Jacobi field along a geodesic $c : [0, l] \to M$ with Y(0) = 0, and define $f : [0, l] \to \mathbb{R}, f(t) := |Y(t)|^2 \ge 0$. By our assumption, $R(Y, c', Y, c') \le 0$

0 and therefore:

$$f'(t) = 2\langle Y(t), Y'(t) \rangle;$$

$$f''(t) = 2\langle Y'(t), Y'(t) \rangle + 2\langle Y(t), Y''(t) \rangle$$

$$= 2|Y'(t)|^2 - 2R(Y, c'(t), Y, c'(t)) \ge 2|Y'(t)|^2 \ge 0.$$

This implies that f is convex, therefore if Y(t) = 0 for some t > 0, then $f_{|_{[0,t]}} \equiv 0$, implying $Y \equiv 0$.

(b) First consider M_{κ} , the model space with constant curvature κ . Let $\overline{c} : [0, l] \to M_{\kappa}$ a geodesic with $|\overline{c}'(t)| = 1$ and \overline{Y} a Jacobi field along \overline{c} with $\overline{Y}(0) = 0$. Such a Jacobi field is given by:

 $\overline{Y}(t) = at\overline{c}'(t) + b\sin(\sqrt{\kappa}t)N(t)$

where N is normal and parallel to \overline{c} . Then $|\overline{Y}(t)| > 0$ for $t \in (0, \pi/\sqrt{\kappa})$, $(a,b) \neq (0,0)$, and therefore $\overline{c}(t)$ is not conjugate to $\overline{c}(0)$ along \overline{c} . For a manifold M with sec $\leq \kappa$ we can now apply the Rauch comparison theorem for M and M_{κ} . We conclude that if Y is a Jacobi field with Y(0) = 0 and $Y'(0) \neq 0$ along some geodesic $c : [0, l] \to M$ with $L(c) \leq \pi/\sqrt{\kappa}$, we have $|Y(t)| \geq |\overline{Y}(t)| > 0$.

(c) Assume there are no conjugate points along c. Let $\overline{c} : [0, \pi/\sqrt{\kappa}] \in M_{\kappa}$ be a geodesic and $\overline{Y}(t) = \sin(\sqrt{\kappa}t)N(t)$ for some normal and parallel vector field N along \overline{c} . Let Y be a normal Jacobi field along c with Y(0) = 0 and $|Y'(0)| = |\overline{Y}'(0)|$. Then the Rauch comparison theorem implies $|\overline{Y}(\pi/\sqrt{\kappa})| \ge |Y(\pi/\sqrt{\kappa})| > 0$, a contradiction.

7.3. Volume comparison. Let M be an m-dimensional Riemannian manifold with sectional curvature sec $\leq \kappa, p \in M$, and r > 0 such that $\exp_p |_{B_r(0)}$ is a diffeomorphism. Let $V_{\kappa}^m(r)$ denote the volume of a ball of radius r in the m-dimensional model space M_{κ}^m . Prove that:

$$V(B_r(p)) \ge V_{\kappa}^m(r)$$

Solution. If $\kappa > 0$, then $V_{\kappa}^{m}(r) = V_{\kappa}^{m}(D_{\kappa})$ for $r > D_{\kappa} := \pi/\sqrt{\kappa}$. So we may assume $r \leq D_{\kappa}$. Choose a base point \overline{p} in M_{κ}^{m} and a linear isometry $H : T_{p}M \to T_{\overline{p}}(M_{\kappa}^{m})$. Recall from Proposition 1.21 that $\exp_{p}(B_{r}) = B_{r}(p)$ and let $F : B_{r}(p) \to B_{r}(p)$ be defined by:

$$F := \exp_{\overline{p}} \circ H \circ (\exp_p |_{B_r})^{-1}$$

ETH Zürich	Differential Geometry II	D-MATH
FS 2025	Solution 7	Prof. Dr. Urs Lang

The proof of Corollary 3.20 shows that for all $x,w \in T_pM$ with |x| < r we have

 $|d(\exp_p)_xw| \geq |d(\exp_{\overline{p}})_{Hx}Hw|$

Thus for all $q \in B_r(p)$ and $v \in T_q M$ we have $|dF_q(v)| \le |v|$, so the volume distortion $J_F(q)$ of F at q is less than 1. Then:

$$V_{\kappa}^{m}(r) = V(B_{\overline{p}}(r)) = \int_{B_{p}(r)} J_{F}(q) \, dV(q) \le V(B_{p}(r)).$$